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EMISSION OF SOUND FROM TURBULENCE CONVECTED BY A PARALLEL

FLOW INTHE PRESENCE OF SOLID BOUNDARIES

by Marvin E. Goldstein and Burt M. Rosenbaum

Lewis Research Center

SUMMARY

A theoretical description is given of the sound emitted from an arbitrary point in a

parallel or nearly parallel turbulent shear flow confined to a region near solid bound-

aries. The analysis begins with Lighthill's formulation of aerodynamic noise and as-

sumes that the turbulence is axisymmetric. It leads to equations which predict the

directivity patterns of the spectral density of the intensity of the sound emitted from a

unit volume of turbulence located at an arbitrary point within the flow in terms of certain

correlation-length scales of the turbulence. In order to apply these equations to predict

the sound field emitted from a complete flow, it would be necessary to integrate the

results over the flow field. Specific results are obtained for the sound emitted from an

arbitrary point in a turbulent flow within a semi-infinite open-ended duct. An experi-

ment which could be used to verify these results is proposed.

INTRODUCTION

Since STOL transport aircraft are intended to operate in densely populated areas,

it is necessary to give considerable emphasis to the problem of noise reduction in the

development of these aircraft. Most STOL aircraft depend for their performance on

lift augmentation devices which involve high-velocity turbulent flows along solid sur-

faces. It has been found (ref. 1) that the presence of such surfaces can result in a con-

siderable increase in noise production.

In this report we shall attempt to obtain some insight into the effect of solid bound-

aries on the process of aerodynamic sound generation and at the same time make some

progress toward developing techniques for predicting such effects analytically. To this

end we shall develop theoretical formulas for predicting the sound emitted from a unit

volume of turbulence located at an arbitrary point in a nearly parallel turbulent shear



flow confinedto a region near one or more solid boundaries. Typical configurations to
which the analysis applies are shown in figures l(a) and (b). It should be emphasized

that the analysis, by itself, only relates the sound field generated by the turbulence at

an arbitrary point in the flow to the turbulence correlation length at that point. In order

to use this analysis for actually predicting the sound field from a given flow, it is neces-

sary to integrate the formulas over the entire region of turbulence generating this sound.

Since the turbulence correlation length appears under the integral sign in this integra-

tion, it is necessary to know this correlation length at every point of the flow in order to

predict the sound field. However, determining the distribution of this correlation length

is in itself a difficult problem, and it will usually be necessary to rely heavily upon ex-

periment for this purpose. Nevertheless, the formulas obtained can be used (even when

the distribution of the correlation length is unknown) for studying the effect of the solid

boundaries on the sound field from the turbulence located at any individual point within

the flow.

The analysis begins with Lighthill's model for the sound emission from turbulent

shear flows (ref. 2). The turbulence is assumed to be locally homogeneous and axisym-

metric; that is, the statistical properties of the turbulence are independent of rotations

about the direction of mean flow. However, they can be different in the direction of

mean flow and the directions perpendicular to the mean flow. The analysis is carried

through by introducing an appropriate Green's function for an arbitrary geometry and

then using the symmetry properties of the turbulence to transform the result into a

manageable form. It is then shown how the reciprocity principle can be used to simplify

the problem of finding the Green's function for the case where the observer is in the far

field. The final result of this analysis is a set of formulas for the spectral density of

the far-field intensity of the sound emitted from a unit volume of turbulence located at

an arbitrary point in the flow. These formulas can be interpreted as the sound field

from a particular sum of statistically independent convected quadrupoles (with certain

coupling terms) whose strengths are determined by the statistical properties of the tur-

bulence.

A particular lift augmentation device which is being considered for use in STOL

aircraft is the augmentor wing ejector flap shown in figure 2. This flap is fed (blown)

through the duct in the wing, as shown in the figure. The high-speed jet issuing from

the wing into the flap (at point 1 in fig. 2) is a potentially important source of noise with-

in the flap. The effect of the flap boundaries on the sound emission from this noise

source can be important.

Motivated by this problem, we applied the general analysis previously described to

predict the noise emitted from a unit volume of turbulence located at an arbitrary point

within an open-ended semi-infinite duct. The Green's function needed for the solution

to this problem is obtained by transforming the boundary-value problem which deter-

2



mines this function into onewhosesolution is known. The turbulence properties which
are used in this exampleare taken from observed results for the mixing region of jets.
This is donein order to relate the analysis to the noise emitted from the turbulence in
the high-speedjet from the duct in the wing into the flap. It must be emphasized, how-
ever, that in order to use this analysis to predict the noise from the jet mixing region
in a completeaugmentorwing, it is necessary to knowthe distribution of correlation-
length scales within this region andto integrate the results over the entire region of
turbulence. In addition, in any real augmentorwing there will be additional noise
sources suchas the mixing region betweenthe flow leaving the flap andthe exterior flow
aboutthe wing and the possible noise source due to the flow entering the flap from above
the wing. However, the general analysis is also capableof dealing with many of these
additional noise sources, provided enoughdetails of the turbulent flow are known. Thus,
the present analysis, by itself, certainly does not give a complete solution to the prob-
lem of predicting the noise from an augmentorwing jet flap. Nevertheless, it does pro-

vide a necessary first step toward this goal. In addition, numerical results are pre-

sented for the directivity patterns of the spectral density of the far-field intensity

emitted from a unit volume of turbulence located at various points within the duct.

These results show how the sound emission processes and the geometric effects of the

duct interact. It also shows how the elementary sources of sound, that is, the individual

turbulent eddies, contribute to the sound field. An experiment which should permit

comparison with the computed results is discussed.

In order to help differentiate which aspects of the sound field are caused by the con-

vected quadrupole nature of the turbulent sound sources and which aspects are geometric

effects of the solid boundaries, results are also presented for the sound emission from

a simple monopole source located within the duct.

FORMULATION

We shall consider the sound emission from a nearly parallel turbulent shear flow

confined to a region near solid boundaries. Typical configurations are shown in figure 1.

The mean velocity is taken to be in the yl-direction, and it will be assumed that it var-

ies only in the Y2-direction. We begin with Lighthill's equation (ref. 2) for aerodynamic

noise generation

V2p 1 _2p_ 1 _2
2 _t 2 2 (PViVj + Pij - c2p6ij) (1)

c o c o aYiaYj



where

(All symbols are defined in appendixE. ) Sinceaerodynamic noise generation is usually
of interest only at very high Reynoldsnumbers, Lighthill (ref. 2) neglectedviscous ef-
fects. Following Ffowcs Williams (ref. 3) we shall supposethat viscous effects can

also be neglectedeven whensolid boundariesare present. We can therefore set Pij

equal to PSij. We shall also neglect (ref. 2) the effects of heat conduction so that

P- Po =c2o (p- Po )

Finally, we suppose that (refo 2)

Pviv j z floViVj

This assumption amounts to neglecting the direct effects of convection and refraction of

the emitted sound by the mean flow and of the scattering of the emitted sound by the tur-

bulence.

When these approximations are introduced into equation (1) we obtain

V2p_ 1 _2p= _27ij

2 _t2 _yi_Yj
C o

(2)

where

_'ij - PoViVj (3)

In order to ensure convergence of the integrals to be encountered, we shall suppose that

Tij = 0 for t _ T, where T is some large time interval which will be put equal to in-
finity at the end of the analysis.

We shall suppose that the solid boundaries are rigid so that the normal velocity

v n = vin i (where n i is the i th component of the unit normal directed outward from the

turbulent region at the solid boundaries) vanishes at the boundaries. With viscous ef-

fects neglected, the equation for the normal component of momentum at the solid bound-

aries becomes



_vn _vi
p--+pvjn i-+n. _P

_t _yj 1 ay i

=0

The first term is zero. The middle term can be shown to be equal to (¥pv2/R), where

R is the radius of curvature of the boundary surface in the direction of the motion and

where the negative sign holds when the boundary surface is concave inward along this

direction and the positive sign holds when it is convex inward. Thus, we get

2
• Vp = ± pv

R

We shall assume that the surfaces adjacent to the regions of turbulent shear flow

are relatively flat; that is, R >_ h, where h is a characteristic length representative

of the distances between boundary surfaces (see fig. 2). Then pV2/R _ 0 for surfaces

adjacent to the flow. We shall also suppose that, at the surfaces outside the regions of

turbulent shear flow, the acoustic approximation applies; that is, the terms involving

the square of the velocity are negligible. Hence,

n i _-_P= fi • Vp _ 0 (on solid boundaries) (4)
_Yi

that is, the normal derivative of the pressure essentially vanishes at the solid bound-

aries.

It is convenient to work in terms of the Fourier transforms (with respect to time)

of the variables. Hence, we put

_ 1 /'_/__ eiWt(P- Po )dtP (5)

_ 1 /_o _ eiWtTij dt
Wij

(6)

Then equation (2) becomes

V2p + k2p = 82Tij (7)



where

k- ¢o

c o

(8)

is the wave number. Then the boundary condition (4) becomes

fi • VP = 0 (on solid boundaries) (9)

The boundary condition at infinity is that P represents an outgoing wave.

The solution to this problem (eq. (7) with boundary condition (9)) can be written in

terms of the Green's function G, whose normal derivative vanishes on the solid bound-

ary. Thus,

a2Tij
P(_') : G(x" I_)-- d_

aYi_Y j

(10)

where _] denotes the volume outside the solid boundaries

(lla)

fi • V G = 0 (on solid boundaries) (llb)
X

where V2- - a2/axiaxi
x

by parts shows that

and G represents an outgoing wave at infinity. Differentiating

(GTij) - a 0 a a _2Gij-- -- ij .... Tij ----
ayiay j ay i ayj ayj ay i aYiaY j ayiay j

Hence, the divergence theorem shows that equation (10) can be written as

a2GP(ff) = Tij aYiaY j
n __0 GT i d_- niTij njTij--

-- dy" + i ayj j_ ayj ayi

(12)



where _ denotesthe solid boundaries. But since

_ 1 /_o ° eiWtpoViV j dtTij

the requirement that the normal velocity vanish at the solid boundaries shows that the

last two surface integrals on the right side of equation (12) vanish. And since the cur-

vature of the solid surfaces adjacent to the region of turbulence (i. e., where Tij is
nonnegligible) vanishes in the flow direction, the rate of change in the normal vector in

the direction of flow (vj/l_ I )(a/ayj)g is perpendicular to the flow direction v/l_" I .

Hence, it follows that

so that

and

Therefore,

viv j _ n i = 0
_Yj

vj-_-a (vin i) =ntvj--v i
ayj ayj

ni _0yj GTij 1 eiWtp0 i Oyj ayj

_ 1 oo e iwt v _+ Gvj_v dt

n ayj ayj

But since the second derivative is along the surface and v n is identically zero on the

surface, the remaining surface integral on the right side of equation (12) also vanishes.

Hence, equation (12) becomes



82G
p(_') = Wij 0yi0y j

m (13)

Although the integral is formally over all space, it need only be carried out over the

source region.

The spectral density of the intensity in the far field is

where T is some large period of time such that Tij can be considered to be zero out-
side the time interval (-T, T), which is of duration 2T. At the end of the analysis, the

limit will be taken as T - _o.

I(_) - -
CoP o

TiJ(Y ) k/(Y _2G(:] _') a2G* (_[Y") d_' dy"'
, , _- ,,_- ,2T _Yi_Yj Yi Yj

(14)

Now upon using the fact that the Fourier transform of a convolution is proportional to

the product of the Fourier transforms of its components and the fact that the Fourier

transform of f(-t) is the complex conjugate of the Fourier transform of f(t), provided

f(t) is real, it follows from equation (6) that

Tij (_.,)T_/(_,,) 2PO f_ iw_ ' 'v"v"
=-- J_oo e- viv_j k l d_-2T 2_

(15)

where

_,,V,V,,_,, 1 fit= vi(_" , t)vj(y-', t)vk(Y*", t + T)v/(y"', t + T) dt"i j k'l 2T
(16)

is the fourth-order two-point two-time velocity correlation tensor.



TURBULENCECORRELATION FUNCTIONS

The following development closely parallels that given in reference 4. Since the

mean velocity U(Y2) is assumed to be in the Yl-direction, the velocity v i can be ex-

pressed in the form

vi(Y" , t) = 6ilU(Y2) + ui(Y" , t)

where u i is the turbulent (fluctuating) component of the velocity.

Upon introducing this into equation (16) we find that

v,v,v,,v,, =/_(0) (_,_)+ 1/_(1) _, _,7)+ 1/_(2) [.-.,, z]i j k 1 ijk/ 2 ijk/"' 2 ijk/[ y ,_*(1), (17)

where we have put

- U'261iSljU_'U _' + U"25 ' ' ' ' u"u"lk61lUiUj + U'2U"251iSlj61k61/ +uiuj k l

(18)

_(1) ,:.:, _-, "r) ----u'u'u"u" - utu; u_:'u}' + ' 5 ' " " 6 u'" '" '"ijk/[y' i j k l 1 ] 2U ( liUjUkU/ + lj iUkU/)

_(2) r-=,
ijkl[Y ',_*(1), 7]

' " 5 5 " '-"- ' " 261j6 u'u"_ (19)+ U U ( li lkUjU/ _- 61j61/UiUk + lk i 1 j

U'U'U"U" ' ' U"U" 2TT"{6 U'U" " 0 U" " "
-- i j k I - uiuj k 1 + _ _ lk i ju/ + II iUjUk

'/6 _ """ 6 6 ,'u" 96 6 ,',"_
+U'U' _ li.lkUjUl + lj l/_i k + " li l/_j_k j (20)

The double primes indicate that the quantities are to be evaluated at y"' = 7' + _* and

t + z, while the primed quantities are evaluated at _" and t. Notice that /_(0) .:=,ijk/[y , _*)
is independent of _. Hence,

1 f5 o-i_w(o) _-, /_(0)•" "ijk/'- ,_*) d7 = 6(w) ijk/

where 6(w) is the delta function.

9



At zero frequencythe inhomogeneousHelmholtz equation(lla) reduces to Poisson's

equation. For IKI >> l Y'I (i.e., in the far field), the delta function vanishes, and the

Green's function of the resulting Laplace's equation is independent of the source location

y. Hence,

at w=0

But this implies that

It therefore follows that, when equation (17) is substituted into equation (15) and the re-
,=,

sult is substituted into equation (14), the term ijk/ky ,_) makes no contribution to the

integral. Hence, upon making this substitutionand changing the variables of integration

from _ and _" to y" and _ for the integration^mover /_(1)ijk/and from _ and y"'
o o r h_.'_) we

to _" and _(1) for the integrati nve ljk/' find that

i (_): Po f_2/e2G(_[_)_2G*(_l_+_')/_(1) "-'-_)e-i_dzd_'d{

+ F f (21)
_k _ljv j

where _j2 denotes the appropriate volume for the double integration over the variables

_' and _ (which is the same as for the integration over the variables y*", _-(1)). But

since the variables y'" and _(1) in the second integral are variables of integration, we

can replace them by y" and _', respectively; and since i, j, k, and l are dummy

indices, we can interchange the indices i and k and the indices j and 1 without

clmnging the value of this integral. Thus, the second integral in equation (21) becomes,

after changing the variable v to -7,

_2/ 82G* (_1_')02G(_I_ + _)- '0-' " ' 8" '
8Yi Yj 8Yk Yl

_)(2)k/(y", _', -_)eiW7 d_-d_" d_'

(22)

10



Now, if it is assumedthat the turbulence is stationary in time, the correlations must be
(2) .-r.,- _)by

invariant under a translation in time. Hence, wecan replace t in /_k/ij(Y ,77 ,-
t + 7. It can now be seen that replacing _" by y', _(1)by _, and v by -T mequa-

tion (20) merely interchanges the primed and unprimed quantities. Hence, it follows

from equations (19) and (20) that

/_(1)kl (_, _*, "r)=/_:_ij(Y", _*, - T)

And upon inserting this into equation (22) we find (since the actual limits of integration

on the variables _" and _*(1) are the same as those for _' and _-(0), respectively)

that the second term on the right side of equation (21) is the complex conjugate of the

first. Hence,

oIw(K) = 2_Co f a2G(x'l_ ') b2G* (x'l_' + _) D(1) (_*', _', _)e -iwv dT d_' d_".,_. , " ijk/
ay i yj _y_ay_

(23)

EXPANSION FOR LOW EDDY MACH NUMBER - CONVECTIVE AMPLIFICATION

We first introduce the new variable

_'- ' 2+2 2, Y3+Y2 =_+Y"'+_2 Yl- Y2

where i denotes the unit vector in the Yl-direction. Then

2

Hence, if in equation (23) we put

_(1) I_ _" c
ijk/"' ,i, "r) = _+ijk/(_'' _'' _') +/_ ijk/(_' _*' _')

where

11



/_ijk/(y ,_', _) ---u'u'u"u"ij k l - u'iuj' u_'u}' + U'U"(51iSlkU'U"j 1 + 5..6_.u:u:'.]1_ 1 K + 261j,5.,u_u;').,,•

C _ 2IT,{ 5 U_U,,. ,,
/_ijk/(y'_''_')- " ' li j kUl

and then change the variables of integration from y"
+

ing the integration over /_ijkl, we obtain

(24)

• _. ?i_ ft_

+ ljUiUkUl )

and _" to y" and _ in perform-

_yi_Yj _Yk_Yl

+ + ] /_ijk/(y,v,7)e-lWVdTdy "d
Yi _Y] 0y k 0yl

where the integral involving /_cijk/ was obtained simply by changing the name of the
dummy variable of integration from 7' to 7. Thus,

(25)

ijkZ(Y,_,7) =2U(y 2) liuj(y',t)uk(Y "+n,t+ _)u/(_'+n,t+ T)+ 51jui(_,t)uk( _+_',t+ T)u/(y" +_',t+

(26)

The symbol "'_/2 always denotes a given volume of space even though the specific limits

for the transformed variables can be different.

If the mean flow were zero, the correlation functions /_iik/(_, _, _-) and /_Cjkl(_, _, _-)
would decay rapidly as functions of _ relative to a characteristic length of the region of

flow and the characteristic wavelength associated with the eddy decay time; and it would

be possible (as will be seen) to neglect variations in G over the range of "_ where /_ +ijk/

and _Cik l are nonzero. However, in the case where there is a mean flow (see ref. 5),

the correlations at points along the direction of flow can extend over long distances com-

pared with the wavelength associated with the eddy decay time since the eddies are moving

with the flow and their apparent decay time is quite short. In order to allow for this, we

introduce a set of coordinates which move with the turbulent eddies. Thus, we introduce

the new variable

_---_ - Uc(Y2)T (27)

12



where Uc, which is in the Yl direction, is the convection velocity of the eddy.

moving-axis correlation functions are now defined by

RCjk/(_, _",_')-_ijk/(_, _, "r)

Then upon introducing the change of variable (27) into equation (25) we get

The

(28)

- Po _e _ 2 " 2 2 I+2

Iw(x ) = 2_c-_ Oyi3y j 8yk_y /
R;jkZ(_',_',_)_-_ d_d7 d_"

(29)

Now let l denote a typical correlation length (eddy size) of the turbulence, let Tf

denote a typical decay time of the turbulence in the moving frame, and let M e be the

Mach number characteristic of the turbulence. It is shown in reference 6 (see sec. 3,

eq. (17)) that

l
__ _ M e
Tfc o

In turbulent shear flows the characteristic turbulent velocity is about 1/10 th of the mean

flow velocity. Hence, for subsonic flows

l l
- << 1

TfC O _f

Thus, the eddy size is very small compared with the wavelength Xf associated with the

eddy decay time. For pipe flows and internal flows in general, the eddy size is very

small compared with a typical dimension h of the boundaries (see fig. 1). Hence, we

shall suppose that

/<< h

The two length scales which appear in the Green's function G (when the observation

13



point is in the far field) are )tf and h. Thus, it is expected that the Green's functions

_ (_IY" + _" + Uc_), and G* x*lY" +1 _ +- _" +2 1 2

- _1only slightly when _ varies over the range 0 -< I _ l. But by definition
+ C

Rijk/(y*,_" , _) _ 0 and Rijk/(y,_', z) _ 0 for I_'J > l, so that we can neglect variations
in the Green's function insofar as the integration with respect to _ is concerned. In

addition, we can carry out the integrations with respect to _ over all space and the

integrations with respect to _ over the volume _} exterior to the solid boundaries.

When the approximations are introduced into equation (29), we obtain

/" "°'<"'+'c"S'+-o° /_e °2G(_'l_'1 e -iw7 _ ijk/(y,7, 7)
Iw(_ ) - 27rc ° OYiOYj OYkOY /

+_7jl<zm,_',_-/]d7d-,d7 (3O)

where the omission of a symbol for the limits of integration denotes that the integral is

to be carried out over all space.

We let Iw(K]_" ) denote the spectral density of the intensity at the point K due to

the sound emitted from a unit volume at _" (ref. 7). Then

Iw(x ) =f_ Iw(_ 1_) d_

and it follows from equation (27) that

IJIT)- po n_%(7)fe-i_TG,kz- iicT)S[wijkZ-7",7) c --(Y + (Y' + Rijk/(Y' _ ' _-'.1)] d_ d_"
2_c o

(31)

where

Gij (_") =

Now it follows from equations (19) and (28) that

14



f [Ri+jk/(y', _, 7)+ Rejk l (y', _*, r)] dr= fRijkZ _Y',L _'1dr

where

+S UIY2-_)U IY2+-_-)[51iSIRRjZ(Y,_,T)+ 51jSlgRiR(Y',_',T)+251jSlRRiz(Y*,_',7)]d_"

(32)

Rijk/(y" , _', I") = u'u'ijUk"/'"'" - u'iuj' u"u"kl

Rij(Y', _*, "r) = u'u"ij

Ri, jk (_' _" T) - ui(Y', t)uj(_" + _*, t + 7)uk(Y" + _*, t + T)

(33)

(34)

(35)

The first two integrals on the right side of equation (32) represent the self noise and the

shear noise, respectively (refs. 8 and 9). The last integral in equation (32) represents a

coupling between the shear noise and the self noise.

LOCALLY HOMOGENEOUS TURBULENCE -VANISHING OF COUPLING TERM

It is shown in reference 4, under the relatively mild restriction that the turbulence

is approximately locally homogeneous and incompressible, that the coupling term be-

tween shear noise and self noise in equation (32) vanishes. Hence, after the names of

the dummy indices are changed, equation (31) can be written as

Iw(KIY')= P--° _a[Gij(_) _ e-iW'rG_l(_ + _cr) f _ijkl(_,_,.r)d_ d,rl2_c o

G _2 ~ --
(36)

15



The first term in this equationis the self-noise term and the secondis the shear-noise
term.

Equation (36)cannotbe further simplified without making additional assumptions
about the turbulence.

REPRESENTATIONOF FOURTH-ORDERCORRELATIONS

IN TERMS OF SECOND-ORDERCORRELATIONS

It is argued by Batchelor (ref. 10, section 8.2) that the part of the joint probability

of the velocity (with zero time delay) associated with the energy-bearing eddies is ap-

proximately normal, at least insofar as the velocities at two points are concerned. This

approximation is better for some purposes than for others. For example, this approxi-

mation gives reasonably accurate predictions about the relation between the second- and

fourth-order correlations (refo 10, p. 176). This relation is found to be (ref. 10,

eq. 8.3.11)

u'u'u"u"ij k l :u'u'i j u_'u}' + u'u"ik u'u"jl + u'u"il u'u"jk at 7 = 0 (37)

But by extending the reasoning used by Batchelor in section 8.2, we can argue that, when

the velocity correlations are separated in time as well as in space, their correlation will

be subject to even more random influences from the neighboring flow than when they

occur at the same time. These influences will, according to the central limit theorem,

tend to make the joint probability distribution more normal. Hence, we expect equa-

tion (37) to be even more nearly valid when 7 ¢ 0. Then in view of equations (33) and

(34) we can now write

Rijk/(y', _*, z) = RikR j l + Ri/ jk (38)

Inserting this into equation (36) and changing the dummy indices gives

:Jl:) [Gij(:) __oo e-iW'T_*_kl ty'-

16



whereU U
AXISYMMETRIC TURBULENCE - QUADRUPOLE CORRELATIONS

It can be seen from the measurements presented in references 11 and 12 that, at

least for jet mixing regions, it is reasonable to assume that the moving-axis correlation

tensor Rij(_, _, 7) is a symmetric function of 7. Thus, figure 27 of reference 11 shows

that Rll(_, _1, 7) peaks at 7 = 0, and figure 13 of reference 12 shows that this function

is fairly symmetrical about 7 = 0. (Notice that in this figure the lines _ l=constant are

parallel to the dashed line. ) Hence, we assume that Rij is an even function of 7. We

shall also assume that the turbulence is axisymmetric about the direction of mean flow.

Then it is shown in reference 4 that Rij is an axisymmetric tensor of the form

Rij(Y',_, v) = A_i_j + BSij + C51i61j + D(51i_j + 51j_i) (40)

/,

where the coefficients A, B, and C are functions of 7, 7, and _- ---V_+ _+ _2v

and are even functions of _1; and where D is a function of y', 7, and _ and an odd

function of _1 o

In order to evaluate the first term on the right side of equation (39), observe that

/RikRj/ dr =/[A_i_k + B6ik+ C61i61k + D(51i_k + 51k_i) ]

× [A_j_/ + B6j/+ C51j61l+ D(61j_/+ 61l_j)]d_" (41)

All the products of the coefficients A, B, etc. which occur in the integrand are even

functions of _2 and _3 and either even or odd functions of _1' (In fact, they are all

even except those terms which consist of products of D with either A, B, or C. ) But

since any integral of an odd function of _i for i = 1, 2, 3 is equal to zero, it can be

seen by inspection that only terms which have two pairs of equal indices can contribute

to the integral. Hence, the integrals must be of the form

fRikRj/ dr = aikSijSkl + bijSikSjl + cijSi/6jk (no sum on i, j, k, or l) (42)
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Therefore, uponnoting that Gij = Gji and interchanging names of dummy indices we
find that

Gij(_)G_/(y* + Uc_)fRikRj/ d_* = aikGii(Y*)G_k(_ + Uc _-) + (bij + cij)Gij(y*)G_j(Y" + UcT)

It is convenient to define

This shows that the coefficient

GT( ") --- + UcT)

aik of Gii GT is the sum of all terms in

(43)

(44)

fRikRj/ d_* with i = j and k = l. Similarly, the coefficient bij + cij of GijG T is

the sum of all terms in ]RikRjl d_* with k and l equal to either i or j.

J[I

There is

a certain ambiguity in the definition of aik and bij + cij since those terms in

f_ik_jl indices be included in either these terms. Butd_ with all four equal can or

once aik is defined, bij + cij is unique. These results are used in appendix A to show
that

GT /RikRj / d_* T/_22 d_"Gij kl = GiiGjj

+ (G22G_3 + G33G_2)f(R23 - R22)d_'+ GllGTlf(R_I-R_2)d_"

+ 2(G12GT2 + G13G ) (R 2 + RllR22 ) d_*

T ~2
+ 2G23G23/(R22 - R2 3) dE

Applying the reciprocity principle to (lla) shows that for _ ¢ y"

Gii = - k 2 G

18



Hence, the first term in equation (39)canbe expressed in terms of the relation

(45)

where

Qij = _i (46)

and

- R12) d_*

Q12 = Q13 =/(R22 + RllR22 ) d_"

d_"

(47)

(48)

These five integrals depend on the four correlations Rll' R22' R12' and R23"

Turning to the second integral in equation (39), we find from equation (40) that

+ D(_jSI/ + _/51j) ] d_" (49)

It is shown in appendix B that this equation can be simplified to obtain

t tt _%cTzft, t,'ajz dr =%_fu t_ajOd_" (50)

It now follows from equations (39), (45), and (50) that
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where the self-noise term is

: Iw(_[_')se + Iw(x*[_)sh (51)

Iw(_ly')se - p° /_e[k4G __f_ e-iWTGTsdT
/TC o

_ _f o, (G22GT3 + G33G_2)(Q23 - Q22 )e-iw_" d'r

_foo e-iWTGTo.. _.]+ Gij ij._ij d (52)

and the shear-noise term is

Iw(x*[Y)sh- 2P° /_e Glj Z _° e-iWTGTjfu'u"Rjj dr dT (53)
_e o

The last term in the self-noise term (52) is a sum of the intensities from independent

quadrupoles. The first term is the emission from a monopole source (weighted accord-

ing to wave number), and the second term is a coupling term between the two longitudi-

nal quadrupoles transverse to the mean flow. The shear-noise term just consists of

the sum of three independent quadrupoles.

Equations (47) and (48) show that the self noise depends on the four correlation

functions Rll' R22' R12' and R23" And equation (53) shows that the shear noise de-

pends on the three correlation functions Rll , R22, and R33. However, it follows from

equation (40) that

2 R 3 d_ = (R 2 - R22R33 ) d_* (54)

Hence, the noise is completely determined in terms of four correlations of the turbu-

lence.
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ISOTROPIC TURBULENCE

The expression for the sound intensity can be further simplified if we assume that

the turbulence is locally isotropic in the moving reference frame. That is, we assume

that Rij is an isotropic tensor. 1 In this case, the correlation tensor (40) reduces to

Rij(Y" , _', T) = A_i_ j + B6ij (55)

where A and B are functions only of _ and 7 (see ref. 10).

Upon defining the correlation-length scale L(y', r) by

L(_,_): 1 £_2 d_"

_)2J 11

where _u 2 is the rms turbulent velocity at _', we find from the results obtained in

appendix C that

(56)

for i,j = 1, 2, 3

and

s
8 \ /

Equation (52) now becomes

_Iw(_ IY')se
"""o" "

GX_ e-iWrGTLdz+Gij X_ e-iWTGTLdr]

(58)

lit is shown in ref. 4 that the correlation tensor for isotropic turbulence must

always be an even function of 7. Hence, if we began with isotropic turbulence, it would

not be necessary to make any assumption about the time dependence of Rij"
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In order to simplify the shear-noise term, weuse the results of appendixD, which
show that

and

u'u"fi:: a_ --/u'u"_33 d_"

/U'U"_22 d_"= o

If we define the correlation-length scale _fl(_, t) by

2(_', T)= -____/u'u"_11 d_"
Uu 2

J

where U denotes the velocity at y', then equation (53) becomes

Iw(_,_')sh:4p°U2u2 /_.[Gll __e-iW_G_l._dT+Gl3 /_ °°
C O

(59)

(60)

Thus, once the Green's function G of the particular geometry has been found, equa-

tions (58) and (60) give the spectral density of the intensity of the sound field due to a

unit volume of turbulence located at the point of _ as a function of the turbulence

correlation-length scales L and _fl.

CALCULATIONOF FAR-FIELDGREEN'SFUNCTION

General Case

Since we are only interested in the Green's function G(K[y') when the observation

point _" is in the far field, considerable labor could be saved in calculating the Green's

function if the far-field Green's function were calculated directly instead of the general

Green's function being calculated and then expanded for _" in the far field. This can be

accomplished by utilizing the reciprocity principle (ref. 13) which states that the Green's
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is equal to the

That is,

function with the observation point at _ and the source point at

Green's function with the observation point at y" and the source point at _'.

G(_Iy') = G(y"t_') (61)

Hence, it follows from equations (lla) and (llb) that

(V 2 + k2)G = -5(x-y') (62)

• VG = 0 (on solid boundary) (63)

where 5(_" - _') = 5(_ - _') and the differentiations are with respect to the variable _"

instead of _. We now put

(64)

where

g(_l Y') - 1 eikl_-Vl (65)
4,1 -

is the free-space Green's function.

we obtain
Upon substituting this into equations (62) and (63),

(v2 + k2) _-- o

n • V_ = -fi . Vg (on solid boundary)

Upon expanding I_" - _[ for larger values of I_*[ we obtain

-a. -_

[x" - _[ = r - x .______y+ O(r-1) as
r

where we have put

(66)

(67)
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It is now convenientto express the location of the source point in terms of the
spherical coordinates shownin figure 3. Then

x • y _yl sin0 cos _ + Y2sin0 sin _ + Y3cos 0
r

and

g(Kl_) ~ __1__1eikrgo(0, _ IF (68a)
4_r

where

go(0,_/lY') = exp[-ik(y 1 sin 0 cos _ + Y2 sin (_ sin @ + Y3 cos O)] (68b)

represents a plane wave propagating in the (-K)-direction. Substituting this into equa-

tion (67) gives

fi .....V_I, 1 eikrfi Vg ° (on solid boundary) (69)
4_r

It can now be seen that equations (66) and (69) possess a solution of the form

: ! eikr o(e,
4_r

where _I,o is a solution of the boundary-value problem

(V 2 + k2)_o = 0 (70)

fi • V_I,o = -fi • Vg o (on solid boundary) (71)

and since _I, represents an outgoing wave at infinity, this is the desired solution to the

problem. Hence, we can write

G(_-I_ ) =_11 eikrGo(0, $ lY') (72)
4_r
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where

Go(0,_ r_) : go(0, _ I_) + _ o(0, _ F_) (73)

and go is the incident plane wave (68) and T o is the solution to the boundary-value

problem (70) and (71). It follows from this that G o is the solution to the problem of a

plane wave from infinity incident on the solid boundary. By eliminatL:_ _he dependence

on the variable r, the problem has been simplified.

Two-DimensionalGeometries

We shall now consider the case where the solid boundaries do not change their shape

in the Y3-direction. Thus, the unit normal vector fi lies in the ylY2-plane and

ft. V =n 1_+ n 2_ (74)
_Yl _Y2

The general Green's function of this boundary-value problem is still three dimensional.

However, the far-field Green's function can be simply expressed in terms of the solu-

tion to a two-dimensional boundary-value problem. Thus, it follows from equations (68),

(70) to (72), (73), and (74) that G O takes the form

where

-ikY3cos0
Go(0, _ I_) = e GI( _ ]yl, y2) (75)

GI(_ lYl, Y2) = e-ik°(YlC°S_+Y2sin_) + _o(_ lYl,Y 2) (76)

and the function

k o- ksin 0 (77)

q_o is determined as the solution to the boundary-value problem

2 _2 2/
_+_+k (Po : 0 (78)
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-iko(YlCOS_+Y2sin_0 )
ft. V_o =-ft. Ve (on solid boundary) (79)

It can be seen from equations (76) to (79) that G 1 is the solution to the problem of a

plane wave from infinity incident on the solid boundary. The wave propagates parallel

to the ylY2-plane and has a wave number k o.

SUM/V_RY OF GENERALEQUATIONS

Before using these results to work out a particular example, we shall summarize

the general equations obtained so far.

The spectral density of the intensity of sound at the far-field point K emitted from

a unit volume at the point _ can be written as

Iw(_'ly') = I <Kl_')se + zo_(Kl_')sh

self noise shear noise

(51)

Axisymrnetric Turbulence

Self noise:

Iw(_*l_)se - p° _e[k4G £ e-iWvGTsdr
_C o

- /) (G22G_3 + G33GT2)(Q23 - Q22)e -iwr d1"

+Gij/) e-iWTGTQij dr ] (52)

Shear noise:

2p ° ooe-iWrGTjIw(_" J_')sh = -- /_Glj __ •/U'U"Rjj dr dr
YC o

(53)
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lsotropic Turbulence

Self noise:

Iw(_" IF)s e - e-iWTGTL d_- + Gij /_,o

(58)

Shear noise:

_C o

e-iW_'GTl._ dT + GI3 /_

(60)

where

Gij = _yi_y j

and the far-field Green's function G is determined in terms of the incident plane wave

problems by

General case:

4_r °(0' _ I_) + g/o (0, _ [_

go e exp[_ik(y 1 sin O cos @ + Y2 sin O sin @ + Y3 cos O)] (68b)

(V 2 + k2),I, o = 0

fi • V,I, o = -fi • Vg o (on solid boundary)

(8O)

(70)

(71)
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Two-dimensional geometries:

ft. V=nl---_--a+ n2._--_--
_Yl _Y2

(74)

ik(r- Y3C°SO)[e-ik°(YlC°Sd/+Y2sin_ )G(_I_ ) = -!-I e + _o(_IYl, Y2
4_r

(81)

k o = k sin 6

+--+k

(77)

= 0 (78)_o

-iko(YlCOS_+Y2sin_ )
fi • V_o = -fi • Ve (on solid boundary) (79)

For both axisymmetric and isotropic turbulence, the shear-noise term is the sum of

contributions from independent quadrupoles with no coupling between them. The self-

noise term, however, has this property only in the case of isotropic turbulence since the

second term in the expression for the intensity for axisymmetric turbulence is a coupling

term between the two longitudinal quadrupoles transverse to the flow. However, in the

case where the geometry is two dimensional, it is possible to express this term also as

a sum of independent quadrupoles. For in this case, equation (81) and the definition of

Gij show that

G33 =-k 2 cos2_ G

and the differential equation (78) shows that

Gll+ G22+k2o G = 0

Hence,

Gll = tan2O G33 - G22 (82)

If this is multiplied by the complex conjugate of the corresponding equation for the time-

displaced Gll, we find that
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tan20

And this showsthat the coupling term in equation (52)can be expressed in terms of inde-
pendentquadrupoles.

A PARTICULAR EXAMPLE

We shall now apply the results obtained in the preceding sections to calculate the

spectral density of the intensity of the sound emitted from isotropic convected turbulence

confined between the two semi-infinite parallel plates shown in figure 4. In this case the

boundary condition (79) becomes

_Y2

- ikoY 1cos _¥ikobsin
- ik o sin _e at Y2 = ±b (83)

The problem of a plane wave incident on two semi-infinite parallel planes subject to the

boundary condition (83) has been solved by using the Weiner-Hopf technique and is pre-

sented in reference 14. It is shown there that for IY21 -< b (see eq. 3.25a in ref. 14)

oo+ifl _Tb_i_y 1-1 (S cosh YY2 D_ sinh yY2)e dot (84)_o- +

J-

where the contour integral in the complex c_ = _ + ifl plane is carried out along any line

parallel to the _-axis with fl in the range

-_k o<fi<cos _ _k o (85)

and it is assumed for purposes of obtaining the solution that k o has been extended into

the complex plane so that it has a positive imaginary part. At the end of the calculation

the imaginary part can be set equal to zero. In equation (84),

(86)
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where the branch cuts are chosenas indicated in figure 1.1 of reference 14. Also,

ko sin @cos (kobsin _/)
(87)

(k o + k o cos _)l/2K+(k O cos _)(a - ko)l/2K (oO(a - k o cos _)

S

ik o sin _ sin (kob sin _)

- _b(k o+ koCOS $)L+(k o cos _)(a- ko)L (a)(a- k o cos _)

co

K+(c0 = e _xl(a)-T_(c_)

n=l
Ill 2 2 ]1/2- kobn_ (1/2)J T i_bn_ (1/2)le +i_bn- (1,/2)

(88)

(89)

v ×2(_)- T+(_)
L±(o0 = e

oo

H k262 on/1/2
(90)

b n =
aT

bn- (1/2) -
b

\%/

where the imaginary part of the logarithm lies between -_ and _°
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and C o = 0.5772... is Euler's constant. In addition, K+ and L+ satisfy the rela-

tions

K+(c_)K (c_) = e -Tb cosh yb -I

JL+(_)L_(c_) = (Tb)-le -Tb sinh yb

(91)

at least within the strip (85) of the complex _ = a + i_ plane. Using equation (86) with

the appropriate branch cuts shows that

y(k o cos _) = -ik o sin _ (92)

Introducing this relation in equation (91) yields

K+(k o cos _)K (k o

L+(k o cos _)L_ (k o

ikobsin_
cos _p) = e

ikobsin_

cos e
kob sin

cos (kob sin _)

sin (kob sin _)

(93)

Upon substituting equations (88) and (89) into equation (84) and using equations (92) and

(93) to simplify the results, we obtain

I / ---+i/_ L_(k o cos Lp)(k o m k o cos _p) -_'b-iay 1-ikobsin_ 1

_°=e -- J]_ i l_ _ ,l e cosh_T2dc_L_(ot)(_ - ko)(Ot - k o cos _)

L

f+i_ °t1

1 K_(k o cos _)(k o - k o cos _)l/2e -Tb-ic_yl

+- sinh YY2 d

2_ K (_)(_ - ko)l/2(_ - k o cos _)
oo+i _

(94)

Now we are interested in the situation where the source point y is within the chan-

nel. This corresponds to Yl < 0. In this case, the contour integral can be closed in

the upper half plane. It can be seen by inspection that the branch cuts in the integrand

cancel and that the integrand has only poles in the upper half plane. Hence, it can be

evaluated by the method of residues to obtain
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(Po

-iko(YlCOS_ +Y2sin_ ) - ikobsint_
=-e +e

ikoYl_ L_ (k o cos _ )

) __ (k o)

,£+--

1

n=l

L_(k o cos _)(k o - k o cos t_)ein_e ifln(bn-yl)

L_' (fin)bn(fln- ko)(fl n - k o cos tp)

Y2
COS --

b
n

1
+--

K_ (k o cos _)(k o - ko cos _)l/2ei[n-(1/2_ei_n-(1/2)[bn-(1/2)-Yl]i£
n=l

K:[_n_(1/2)]bn_(1/2)[fln_(1/2)-ko]i/2[_n_(1/2 ) -k 0 cos t_]
sin Y2 Jbn-(1/2)

where

fV --

r

kob/_2v2 2 for v >---

Ik _2v2o b2

and k o can now be taken as real.

K_[fn_(1/2)] and L_(fn) , respectively, with the factor

product:

kob
for v -<--

77"

J

• <o, s <

1
v=n or v=n--

2

n = 1,2,3,. .

L'_ (fin) denote

n = v omitted in the infinite

K'- [fin- (1/2)] =
1 eiabn_ (1/2) .K_(a! 1

ibn_(1//2) (1- fn-(1/2)J
_=fln-(1/2)

L'(f n) =Ii--_n ei_bn fd_--)- 1
- 2nJ

=fin
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Upon using these results in equation (81), we find that the far-field Green's function

becomes

ik(r-Y3C°s0-bsin0sin_) _(¢ 0[Y 1, Y2 )e
4_r

where we have put

_(_, 01yl, Y2)- e -ik°yl M_(_)+ S_0)

M_(_) -
L_ (k o cos _)

L_ (k o)

(95)

oc oo

_[- )]JIns_j) _ 1 ' Y2 Y2i (-ifln)iJ n cos -- - iron_(1/2 sin for j = 0, 1, 2
bn bn- (1/2)

n=l n=l (96)

where S_j) is the jth derivative of S_0) with respect to Yl and

(- 1)nK_(ko cos V/)(k o - k o cos _ )l/2eifln_(1/2)Ln_(1/2)-YljFb'[

In -

K'_[_n_(1/2)Jbn_(1/2)[fln_(1/2 ) - koJl/2[fln_(lfl2 ) -k O cos _]

Zfl -

(-1)nL_(k o cos _)(k o - k o cos _)e ifln(bn yl)

L_' (_n)bn(fl n - ko)(fl n - k o cos _)
J

(97)

These results can now be used to calculate the various quadrupole source terms which

appear in equations (52), (53), (58), and (59). Thus,

ik(r- Y3 cos 0- bsin0 s in _ )
Gij (x" I_1 : _ e

4,r
_ij(_V, elY 1, Y2) (98)
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where Qij = _ji' and in view of equation (82)

= M e -ik°yl + Sl(0)

_11 = " 2.. -ikoYl-KOlVI_e + S_2)

Q12 = $21)

[_13 =-ikc°s O ikoM_e ik°Yl+ S 1

_22 = tan20 _33 ° _11

_23 = -ik cos 8 S(20)

_33 = -k 2 cos2O[M_e-ikoYl + S_ 0)]

(99)

and we have put

oO oO

s_j) 1 _'_ (-i/_n)j _ [-ifln- (1/2)] j--- -- JnsinY2- In cos

i bn bn bn- (1/2)
n=l n=l

Y2
for j = O, 1

bn-(i/2)
(1oo)

We shall now restrict our attention to isotropic turbulence. In order to evaluate the

integrals in equations (58) and (59) to predict the self and shear noise, it is necessary to

know the dependence on 7 of the turbulence correlation lengths L and _ft. Chu

(ref. 11) has shown that for the mixing region of a jet _4L/av4 and a4_fl/_ 4 could be

fit fairly well with functions of the form c 1 sech c27 cos c3_ (see fig. 37 in ref. 11).

We shall, for lack of better information about the turbulence, assume that relations of

this form also hold for the turbulence between the plates. 2 Thus, following Chu we put

2Actually, itturns out that the finalresults are quite insensitiveto the details of the

models used for L and ._.
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_4L = L(oIV) sech ¢o_2)T

av 4

a4"_- _fl(oIV) sech ¢o_l)v

_4

cos

cos w(,l)'r

(101)

where

The time dependence in G and the Gij is associated with the variable Yl' which
only occurs in exponentials. Hence, the integrals over 7 which must be performed in

equations (58) and (60) can be found by specializing the constant a in the relation

i(w-Uca)_ 1 £ i(w-Uca)r _4L
e L dT- - e

(¢0- Uca) 4 a_"4

dT

L v> F ei(¢o- Uca)7

(w- Uca) 4 ___o

cos u)(,2)Td'r

_L(_v)

2w_2)(w- Uca) 4
sech _[ w- Uca + ¢°('2)] + sech2 w_2 )

and in a similar relation for ._.

We shall now suppose that the turbulent eddy is far enough from the end of the duct

so that the contribution to the integrals in equations (58) and (59) are principally from

the parts of the Green's function for the interior of the duct. Thus, for the case where

the eddy is moving toward the end of the duct, we suppose that the point _" is far enough
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from the end so that the eddy at y will decay before it reaches the end of the duct. Us-

ing values of the eddy lifetime typical of jets, we estimate that this will occur if the

center of the eddy is about 1/2 to 1/4 of the duct width from the end. When these results

together with equations (44) and (95) to (100) are used in equations (58) and (59), we find

I (_'ly')se- 7P°( u--_)2 L(oIV)/_ _(2)]* + _ij[_2 (i02)

8_c6(4_r) 2

IJl ') h ,Co6(4 r)2 + _13LC/13j

(m)  l ),or m=12 andwhere _ij :

_(2) = M D(2)e-ikoYl + (2)S_0)

_):-k2o M D(m)e ikoYl+ (m)s_2) for m = 1,2

_(2) (2)S_1)12 =

_(m)13 = -ik c°s 0[-iko M-D(m)e-ik°yl + (m)s_ 1)] for m = 1, 2

_(2)= tan20 (2 _ (2)22 )_33 _11

_2(2) -ik cos 0 (2)S(20)3 =

(2) -k 2 cos 2 0 _(2)33 =

(104)
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re>S?' _,_,,,Vnl'<,sY2 [i_o,,:d',A_'<_,2_sin--who,o
i n n n bn bn-(1 '2 L"l

n 1 n 1

D(m) ,_

and

(2)S_J}
1 (-i_3nl'i I AI2)sinY2 -i;3n-(1/2] ] Y2

i n bn _ IIIA}I__)(1 /2} c_,s bn-(1 '2)

n 1 n 1

2k_m)(1 - M c sin _ 4k4
el:h[ r-[k(1-Me sill I})+ k!m_ + sech_ lr [k{1-M e sin _i)-k_ml/

A(m) rr ech[ r 1t seehf2k_m)[ _ Mc_3v_ I/v  klm,,k_M, vt=¢"' +

v _n- 1 for n : 1,2,3 ....

k 2

1,2 for m 1

0, 1,2 for m

fin" j O, 1

for Ill

for m 1,2

(105)

(106)

Here we have put

and

V c

MC=
C o

(107)

is the convection Mach number of the eddy.

The spectral density of the intensity of the self and shear noise can now be computed

by substituting equations (89), (90), (95) to (100), and (104) to (106) into equations (102)

and (103).

The expressions for Iw(x*]_)se and Iw(x'l_)sh become particularly simple when
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= 0 (i. e., in the plane of the duct). Thus, it follows from equation (97) that In = Jn = 0.

Equations (95), (96), (100), and (105), therefore, show that all the S_ ) and (m)s(_) are

equal to zero and M = 1. It can now be seen from equations (77), (99)and (102) to (104) that

icv(_- [_-)s e Po(U-2)2 L (oIV)k4D(2)= at $ = 0 (108)

_c6(4_r) 2

and

Iw(K[_)s h : 2p°U2u2"_(°IV) k4D(1)sin20 at _9 = 0 (109)

gc6(4gr) 2

DISCUSSION

Emission of Sound From Monopole Source of Unit Strength

Before considering the sound emission from a region of turbulence within the duct,

it is useful to consider the sound emission from a monopole source placed in various

locations within the channel. It is shown in reference 15 (ch. 7) that the intensity of

sound in the far field from a harmonic monopole source of unit strength can be expressed

in terms of the far-field Green's function G by

k2pocoIGI 2

Im on = 2

For the two-dimensional channel shown in figure 4, the far-field Green's function is

given by equations (95), (89), (90), (96), and (97). It can be seen from these equations

that [G I depends on 0 and k only in the combination

k o = k sin 0

Hence, the number of curves necessary for presenting the results can be minimized by

plotting
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b 2 sin20 Imo n

PoCo

: (kob)2]G[ 2

as a function of $ for various values of the wavelength parameter

;t 2_

bsin 0 kbsin 0

and various values of the source location Yl/b and Y2/b. The geometrical relation of

the angles 0 and _ to the duct wails is illustrated in figure 5. Holding 0 and r

fixed and varying _ corresponds to traversing the circle C in the observation plane p

parallel to the ylY2-plane. When _ = _/2, the plane p is the ylY2-plane.

The directivity patterns are shown in figures 6 to 8. These figures are polar plots

of (4_rb) 2 sin20 Imon/PC o as a function of the angle gJ for various positions of the

source within the duct. In order to keep the scales of these figures reasonable, the fig-

ures are divided into three groups. The first group, figures 6(a) to (g), presents the

curves for wavelength parameters of 8, 6, and 4. The second group, figures 7(a) to (m),

corresponds to wavelength parameters of 2, 3/2, and 1. And the third set of curves,

figures 8(a) to (h), are for wavelength parameters of 3/4 and 1/2. The reason that the

intensities at _ = _ and g_ = -_ are not equal is that the duct walls extend to minus

infinity and thereby separate these points.

It can be seen from figure 6 that for the long wavelengths the patterns are fairly

symmetrical, with the sound being radiated fairly uniformly _n all directions. The

patterns become more uniform as the wavelength increases. However, it can be seen

from equation (95) that only the first term makes any contribution to the far-field Green's

very long wavelengths because the infinite sum S_°)'- becomes very small.function G for

But this term is the solution for the far-field radiation pattern of a plane wave traveling

down the duct from Yl = _0o (ref. 14). Notice also that this term is independent of the

vertical location Y2 of the source within the channel, and the intensity Imo n is inde-

pendent of the coordinate Yl" Hence, the far-field radiation pattern is independent of the

source location within the duct for long wavelengths.

The terms in the infinite sum S_ u] represent different modes which can propagate

within the duct. The first sum in equation (96) represents symmetric modes, and the

second sum represents antisymmetric modes. As ;t decreases (i.e., k o increases),

the exponentials which enter these terms through equation (97) change from real to com-

plex (by means of /3v) for successively higher order terms in the sums. This corre-

sponds to successively higher order modes propagating within the duct. Thus, as the

wavelength becomes shorter, more modes can propagate and, as shown in the figures,
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the radiation pattern becomesmore nonuniform. As each newmode comes into play,
the pattern changesmarkedly.

It canbe seenfrom figure 6, that the first modein the sum S_u)' b̂ecomessignificant
when k/(b sin 0) _ 4 if the source is off axis (Y2¢ 0). However, if the source is on
axis, it does not becomesignificant until _/(b sin 0) has decreasedapproximately to 2.
This is causedby the fact that only the symmetrical modes canpropagatewhenthe
source is on axis andthese modesswitch on at shorter wavelengthsthan the antisym-
metrical modes. This effect also causesthe radiation pattern to bemore complex when
the source is off axis (Y2¢ 0). Thus, as shownin figures 7 and 8, large lobes developas
the source is movedfrom the axis towards the wall. It canbe seenthat as the wavelength
becomesshorter, the pattern becomesmore complicated. However, the basic outlines
of thesepatterns tend to follow the line of sight from the source as the geometric acous-
tics limit (k <4 b) is approached. Actually, the wavelengthsconsideredhere are too
long to evidencestrong geometric acoustics effects.

Emission of Sound From a Unit Volume of Turbulence Located

at a Point Within the Duct and ProposedExperiment

In the preceding subsection the emission from a monopole source within a duct was

discussed. In this section we shall discuss the results for the sound emission for con-

vected locally isotropic turbulence within the rectangular duct. This configuration was

chosen because of its resemblance to the augmentor wing ejector flap shown in figure 1.

However, it must be emphasized that the results given in this subsection do not by any

means represent the total noise emitted from an augmentor wing. They give only the

sound emitted from a unit volume of turbulence located in the mixing region within the

augmentor ejector. In order to find the complete noise pattern, it is necessary to inte-

grate these results over the entire interior of the flap. In addition to this, there are

other possible noise sources which can contribute to the noise pattern.

However, it is possible to propose an experiment which corresponds closely to the

present analysis. This experiment consists of placing a small intense jet at various

locations within a large wide duct and measuring the narrow-band intensity spectra in

the far field. Although it is anticipated that the lobes of the observed directivity pat-

terns will not be nearly as sharp as those predicted by the present analysis (due to the

fact that the source is not localized and that the microphones do not measure a narrow

enough frequency range), it is still felt that reasonable agreement should be obtained.

Discussion of equations. - It has been shown that the spectral density of the inten-

sity of the sound in the far field emitted from a point y" within the duct can be ex-
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the sum of two terms. The first of these, Iw(_'ly')se, is called the selfpressed as

noise and represents the noise emitted by the action of the turbulent eddies with them-

selves. This term is given by equation (102). It is proportional to the sum of the in-

tensities of all six independent quadrupoles corrected for convection effects by the mean

flow. (Notice that the first term is really a simple source, but it is by virtue of equa-

tion (99) proportional to the longitudinal quadrupole with axis in the Y3-direction. ) As

in the case of jet noise, this term is also proportional to the fourth-order two-point tur-

bulence velocity correlations which are accounted for by the factor L_oIV).'"

The second term contributing to the far-field intensity is the shear noise Iw(_" 1 )sh,
which represents the sound due to the action of the turbulence on the mean shear. It is

given by equation (103). It can be seen that it is proportional to the two longitudinal

quadrupoles suitably modified by convection effects in the directions perpendicular to

the velocity gradient (Yl and Y3 directions). This term is also proportional to the

second-order two-point turbulence velocity correlations, as well as the mean-s_uare,_r_r
velocity. The turbulence velocity correlations are accounted for by the term .fo ").

In the plane 0 = 7/2 (shown in fig. 5), a number of the quadrupoles make no con-

tribution to either the shear or self noise. The reason is the cos 0 dependence of

these quadrupoles, as shown in equations (99) and (104). Thus, the shear noise is sim-

ply proportional to the longitudinal Yl-direction quadrupole. An inspection of the equa-

tions for 0 -- _/2 shows that this quadrupole also tends to dominate the self noise at

low frequencies.

It is also of interest to have expressions for the intensities in the ylY3-plane, which

is perpendicular to 0 = ;/2-plane, as shown in figure 9. This corresponds to setting

to 0 and letting _ vary. The expressions for Iw(_ly')s e and Iw(x'lY')s h forequal

the case where _ = 0 are given by equations (108) and (109), respectively. These

equations take on particularly simple forms. The directivity behavior of the self noise

is strictly through the term D [2_,"" whereas the directivity of the shear noise is through

the terms D(1)sin2_. The terms D (1) and D (2) are given by the first of equations (106).
4

They contain the same convective amplification factor (1 - M_ sin _)- that appears in
(1) (2).jet noise (ref. 7). In fact, the angular dependence of the terms D and D is caused

strictly by the convection of the sound source. The results can also be shown to be con-

sistent with those obtained by Ffowcs Williams in reference 3.

Organization of plots and choice of parameters. - The shear- and self-noise terms

Ico(x*I_)se8_Co 6(4_r)2

7p o(U-2)2 L (IV)
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and

I (x'I Y')shTrCo6(47rr )2

2PoU2U-_._(oIV)

are plotted as a function of the azimuthal angle _ for 0 = _/2 in figures 10 to 16 and

for 0 = _/4 in figure 17. They are plotted as a function of 0 for _ = 0 in figures 18

to 22. These variations correspond to varying the observation point in the far field in

the three planes shown in figures 5 and 9. These directivity patterns are influenced by

the wave numbers of the turbulence which emits the sound. In the present model the

turbulence spectra are characterized by the parameters k_m)" and k_,m)-" for m = 1 or

2 (compar.e eq. (101) where the corresponding frequencies are defined). For the self-

noise m equals 2, whereas for the shear noise m equals 1.

In reference 11, it is found that the turbulence data for round jets were best fitted

by taking

bo_l) _ M,

bok_2) _ 2.3 M,

bok(,1) _ 2 M,

bok(,2) _ 5.4 M,

where M, is the jet-exit Mach number and b o is the jet radius. For lack of better

information, these relations will also be used in the present case. We shall suppose

that M, is the exit Mach number of the flow into the duct. For example, for the aug-

mentor wing shown in figure 1, M, might correspond to the velocity of the jet entering

the augmentor flap at point 1. Again, as in a jet, we shall relate the eddy convection

Mach number to M, by assuming that
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Figures 1 and 4 showthat it is appropriate to take Mc as positive for modeling the
soundcoming from the rear of the augmentorwing exit, whereas it is appropriate to

take Mc as negative for modeling the soundcoming from the openingin the front of the
flap (entrance). Therefore, results for both these casesare presented. For the sound

from the front of the flap, it wouldseemappropriate to choose bo equal to the width of
the passageat point 1, which is approximately 1/4 b. For the soundcoming from the
rear of the flap, a value closer to b would seemappropriate. Therefore, results are
presented for both the cases bo/b = 1/4 and bo/b = 1.

Discussion of results. - Results are presented for the 8 = _/2, 0 = _/4, and

= 0 planes.

0 = _/2 plane: Figures 10 to 16 are plots of the far-field self and shear noise in the

0 = _/2 plane. The first two parts of these figures are polar plots of the self noise in

two different frequency ranges, and the last two are polar plots of the shear noise for

two different frequency ranges. Comparing the first and last parts of these figures

shows that the shear noise is always elongated in the direction of the duct axis (Yl-

direction), whereas the self noise tends to radiate uniformly or laterally. This down-

stream beaming of the shear noise is caused by the fact that, in the _ = _/2 plane, only

the longitudinal quadrupole in the Yl-direction makes any contributions, whereas the self

noise is composed of this plus a number of other longitudinal and lateral quadrupoles.

These figures also show that at any given frequency, the shear-noise curves have much

fewer lobes than the self-noise curves. This can also be attributed to the longitudinal

quadrupole nature of the shear noise since the high directivity of this quadrupole in the

downstream direction allows it to be beamed out of the duct without interacting with the

walls. There is, therefore, much less interference due to reflections and diffraction by

the duct than in the more uniformly directed self noise.

Figures 10 and 11 are identical except that the direction of the convection velocities

M c is reversed. The self-noise curves with M c in the positive direction have much

weaker lobes than those with M c in the negative direction. The reason for this is that

the convective effects tend to beam the self noise in the direction of motion. Thus, when

M c is in the positive direction, the sound is beamed out of the duct. This beamed pat-

tern will then interact to a lesser extent with the channel walls than when M c is nega-

tive. However, the already highly directional shear-noise patterns show no significant

additional beaming due to convection, and their directivity patterns are therefore quite

similar. Figures 12 and 13 show the effect of decreasing the Mach number M. from

0.8 to 0.3 (with a corresponding decrease in Mc). Comparing figure 12 with figure 10

shows that increasing the magnitude of the convection velocity in the negative direction

causes a marked decrease in intensity with no si_nificant change in the shape of the

directivity patterns. Comparing figure 13 with figure 11 shows that increasing the con-

vection velocity in the positive direction causes a slight decrease in intensity with no
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significant change in the shape of the directivity patterns.

Most of the curves are drawn for the case where bo/b = 1/4. Figure 14 shows the

effect of putting bo/b = 1. A comparison of figures ii and 14 shows that the curves for

bo/b = 1 exhibit less interference effects than those for bo/b = 1/4.

Figure 15 shows the effect of moving the turbulent source region away from the cen-

ter of the duct toward the upper wall (Y2 _ 0). Comparing this figure with figure 10

shows that this has littlemore effect on the shear noise than beaming it in a downward

direction. However, the self noise exhibits a complex change in the interference effects

as the source is moved toward the wall. This is probably related to the fact that the

antisyrnmetric mode can propagate within the duct when the source is off center.

Figure 16 shows the effect of moving the turbulent source point farther into the duct.

Comparing figures 10 and 16 shows that (for both self and shear noise) this causes very

littlechange in either the directivity pattern or the magnitude of the intensity.

e = _/4 plane: Figure 17 is a plot of the far-field intensities for the e = _/4 plane.

This plane is (as shown in fig. 5) parallel to the a = _/2 plane but shifted over from the

centerline of the duct. Upon comparing figures I0 and 17, we see that the shear-noise

curves on these two planes are similar. However, the figures show that the self-noise

intensity patterns exhibit weaker interference effects in the _ = 7/4 plane than in the

0 = _/2 plane.

= 0 plane: Figures 18 to 22 are plots of the far-field, self and shear noise in the

= 0 plane, which corresponds to the ylY3-plane shown in figure 9. These plots are

arranged in the same way as those for the 0 = v/2 plane. Thus, the first two parts of

these figures are polar plots of the self noise in two different frequency ranges, and the

last two are polar plots of the shear noise for two different frequency ranges. They also

correspond to the same values of M c and M. as those for the 0 = v/2 planes. These

figures are essentially plots of equations (108) and (109). It can be seen from these equa-

tions that the far-field intensities are independent of the source location within the duct.

Hence, unlike the previous cases, these coordinates no longer appear as parameters in

the plots. In addition, the quadrupoles in this plane take on a simple form and, hence,

cannot exhibit the interference effects which occurred in all other planes. Thus, the

curves in figures 18 to 22 are much smoother than those in the previous figures.

These figures also show that the self noise is more intense in the Yl-direction (i. e.,

the direction along the duct axis) than in the direction perpendicular to this when the

convective Mach number M c is positive, and that it is less intense along the Yl-direction

than in the perpendicular direction when M c is negative. The first two parts of fig-

ures 19 and 21 show that this elongation is much more pronounced at high convective

Mach numbers than at low Mach numbers. This is essentially the downstream beaming

effect caused by convective amplification, which occurs in jets. In fact, the order of

magnitude of the effect is about the same in the present case as it is for jets (ref. 8).

On the other hand, figures 10 to 16 show that the shapes of the directivity patterns in the
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= _/2 plane are much more dominated by diffraction effects than by convection. Thus,

the far-field intensity pattern behaves in much the same way as for jet noise in the plane

of the duct and behaves in a much different fashion in the plane perpendicular to the duct.

The variation of the intensity with frequency in the _h = 0 plane is much the same

as in the _ = _/2 plane. This is not surprising since the points at 6 = _/2 in figures 18

and 21 correspond to the points with @ = 0 (from the same values of Mc, M,, and fre-

quency) in the figures for the _ = _/2 plane. As in the case of jet noise, the results for

= 0 are independent of Mc(ref. 8).

SUMMARY OF RESULTS

A theoretical description has been given of the sound emitted from a nearly parallel

turbulent shear flow confined to a region near solid boundaries. The analysis leads to

formulas which can be used to calculate the directivity of the spectra of the sound

emitted from a unit volume of turbulence located at an arbitrary point within the flow.

In order to use these results to calculate the sound emitted from any finite region of

turbulence, it is necessary to integrate the formulas over the region of turbulence.

This requires a knowledge of certain turbulence-correlation-length scales at each point

within the flow.

The results are applied to obtain the sound emitted from a unit volume of turbulence

located at an arbitrary point in a turbulent flow confined to the interior of an open-ended

semi-infinite duct. Numerical results for the spectral density of the far-field intensity

of the self and shear noise are obtained for this case. It is shown that the directivity

patterns in the plane of the duct are much the same as for jet noise; whereas those in

the plane perpendicular to this are considerably different, being dominated more by dif-

fraction effects than by convection effects. This is especially true at the higher fre-

quencies. The shear noise in the plane perpendicular to the duct is dominated by the

longitudinal quadrupole with its axis along the duct.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, August 11, 1972,

501-04.
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APPENDIXA

REDUCTION OF SELF-NOISECORRELATIONINTEGRALS

FOR AXISYMMETRIC TURBULENCE

It follows from equation (41) that

RikRj/ dr =/[A2_i_j_k_l + AB(6ik_j_ / + 6j/_i_ k) + AC(51jSI/_i_ k + 51i61k_j_/)

+ AD(61j_i_k_ / + 61/_i_k_ j + 61i_j_k_ / + 61k_i_j_/) + D2(61iSlj_k_/

+ 61k61l_i_j + 61i61l_k_ j + 51k61j_i_l) + B26ikSjl + BC(6ik61jSl/

+ 6jlSli61k)+ BD(6ikSlj_/ + 5ik61/_ j + 5j/61i_ k + 5j/61k_ i)

+ C251i61j61k611 + CD(61i61k61j_ l + 61i61161k_j + 61i61j61l_ k

+ 61j61k61/_i) ] dr

It can be seen by inspection of this equation that a suitable choice for the coefficient

in equation (42) is

(A1)

aik

f2 2 2 2 2
+ j./(2AD_ 1 + +,,,._-fA ,,r D )(6 li_k (5lk_i 2) dr (A2)

It follows from this equation that

aik = aki (A3)

a13 = a12 (A4)

But upon using equations (A3) and (A4) we get
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T T
: al,GllGll + a22G22G22 + a33G33G33 + + +

= .llGllGll + a22G22G22 + .33G33G33 + + + -

: allGllGll + a22G22G22 + a33G33G33 +

= (all - al2)GllGT1 + ('22 - a12}G22G_2 + (aa3 - a12)G33G3a + "12OiiGjj (a23 -

By using equations (43)and (A5) and the remarks following equation (44), itcan now

be seen by inspection of equation (A1) that

GijGWz/_ik_jl d_" = al2Gii jj + (a23 -

+ GIIG 1 II- a12 + (2AB_ + 2AC_ + 2D2_ + B 2 + 2BC + 4BD_I +

T / 2 2 2 2ABe2+ 2AB_+ 2AC_+ 2D2_+ 8ADVISe+ 2B 2 2BC+ 4BD_I )d_"+ GI2GI2 (4A _i_2 + +

T f 2 2 2 2AB_+ 2AB_+ 2AC_32+ 2D2_+ 8AD_I_+ 2B 2 2BC+ 4BD_ 1) d_"+ G13G13 (4A _1_3 + +

+ G23G23 (4A _2_3 +

By carrying out the integrations in polar coordinates, it can be verified that the coeffi-

G12G_2 and G13G_3 are equal and that the coefficients of G22G_2 andcients of

2_ 2_

G33G_3 are equal (see eq. (A2) andrecallthat _0 cos2_hd_P =_0 sin2_d_P).

Hence, it follows from equation (A2) that
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+ + + ÷ + C 2 • 4CD_ 1)d_'- a12 ]
+ 4AD_ + 4D2_ + 2AB_ 2AC_ B 2 2BC 4BD_I

T)f 222 2AB_22 . 2ABe2 + 2AC_2 2D2,1+ 8AD_I_ _ 2B 2 2BC+ 4BDtl ) d_+ G13G13 (4A _i_2 + + + +

T 222 (A6)

Now it follows from equation (40) that

R21=A2_ 4+2AB_2+ 2AC_+ 4AD_3+ B2+2BC+ 4BD_I + 4CD_ 1 4D2_1+ C2 + 2

2(ff_2 "_ _ 2_2.2
+ R11R22) = 4A _1¢2 2

+ 8AD_ l _2 + 2D2_ 2 + 2AB_ 2

+ 2AC} 2 + 2AB_I2 + 2B2+ 2BC + 4BD_I

Hence, it follows from these relations and equation (A2) that equation (A6) can be written
as

48



G GT _2GijG_f_ik_jZd_'= ii J,_,_. __ (02_0_• o_3q_)f(_3 G)_:

+ al_f(_,- _2)d_" +2(G12G'/2+ G13C_3)f(_2 + R11R22)d_"

W _2 _

The particular form of the last integral has been obtained by introducing polar coordi-

nates and carrying out the integration over the angle variable.
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APPENDIX B

REDUCTION OF SHEAR-NOISE CORRELATIONINTEGRALS

FOR AXISYMMETRIC TURBULENCE

It follows from interchanging names of dummy indices in equation (49) that

Glj GTZ fU'U"Rj l dr= Glj GTlfu'u' 'A_ j_l d_*+ GliGTi fU'U' 'B d_"

+ (GljG_I + G11GTj)/U'U"D_ j d_'+ G11GT1fU'U"C d[

(B1)

Upon noting that A is an even function of _i for i = I, 2, 3; that

functions only of _2; and that any integral of an odd function of _i

zero, we find that

U' and U" are

for i = I, 2, 3 is

GljGTIfu'U"A_j_I d[= %O_jfU'U"A_y d[

And since D is an even function of _2 and '_3

(GIjGTI + GIIG_j)/U'U"D_j d_"

and an odd function of _ 1

= 2GllG_I fu'u"D_ 1d_"

Hence, equation (B1) becomes

+%20_2/v',J"(At_ +B, dr'+ *13_1Z3/u'u"(At32+B)dr
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We can therefore write from equation (40)that

Glj GT//U'U"Rj / d_" = Glj G_j/U'U"Rjj d_
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APPENDIX C

REDUCTION OF SELF-NOISE CORRELATIONINTEGRALS

FOR ISOTROPIC TURBULENCE

It is shown in reference 4 that the requirements of continuity dictate that

4A+_ 8--_A+ 10B-0

where _ : I_l and that this in turn implies that (see ref. 10) there exists a function F

such that

1 _FA:
24 _

(c1)

Substituting these results into equation (55) shows that

,,,,.ikRjl d_* 1 _F, 5ik F +-_F 5jl
2 2 _ 2

where we have put
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Uponintroducing spherical coordinates and carrying out the integrations over the angle
variables, this becomes

/0_( )( )_ _ _2 F+I_F F+-I_F ' d_RikRj l d[ = 4_SikSjl 2 6

f0 _°

77

+ _ (6ijSk/ + 5ikSj/ + 8i/6kj ) _2(_F')2 d_
15

But

/0__(_+__)(_+_) _
2 1 2]+ - _FF' +-- (_F') d_
3 12

=_ + _FF'-2 _FF _2 d_ +-_
3 3

0 (C2)

Now we must require that the integral /Rij d_" remain finite. Hence, it follows

from equations (55) and (C1) that this implies that F_ 2 d_ remain finite. Hence,

F must approach zero faster than _-3 as g - o_. This shows that the integrated term

in equation (C2) vanishes and we obtain

Rj/ d_ = ikSj/ +5 (SijSk/ + 5ikSj/ + 5i/Skj _2(_F')2 d_

and since, in particular,

it follows that

1 165ikSj/ 5ijSkl 5j/Ski ] f_ d_-f_ikujz dr --8 + +
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It nowfollows from equations (47)and (48)that

_f_ _v% :8 for i,j = 1,2,3

and

8
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APPENDIXD

REDUCTION OF SHEAR-NOISECORRELATIONINTEGRALS

FOR ISOTROPICTURBULENCE

Substituting equation (56) into equation (55) shows that

U'U"Rjj d_" = U'U" + _ f' - _--_JF d_"
2 2_

(no sum on j)

Upon introducing cylindrical coordinates with the axial direction along the _2-axis and

#2= _+ _2, we find that

fu,u,,_11 d_ = fu'u"fi33 d_"

and

2'U"R22 d_" = U 2 - + 1 - _22)]_ dp d_2

But since [2 = _2 + [2

_1_F'(_) - _ _du = (_) + 1 _F'(_) -_ d_

_ _ )1_F(_)_ d_ + 1 F(_)(_2 _
2

F(_)_ d_ = 0

55



where the dependenceof F on 7 has been suppressed. Hence,

fU'U"R22 d_" = 0
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APPENDIXE

SYMBOLS

A

A(m)
V

a

aik

B

b

b..

b o

b n

bn-(1/2)

C

C O

cij

C o

c 1, c 2 , c 3

D

D (m)

D

F

Gij ]

Gij(V)

GT(_)

coefficient in tensor Rij

defined by eq. (106)

constant

coefficient in eq. (42)

coefficient in tensor Rij

one-half of distance separating semi-infinite parallel plates

coefficient first appearing in eq. (42)

jet radius

b/n_, n = 1, 2, 3, . . .

b
, n = 1, 2, 3, . .

coefficient in tensor Rij

Euler's constant, 0. 5772 .

coefficient in eq. (42)

speed of sound in medium of density Po and pressure Po

constants

coefficient in tensor

defined by eq. (106)

defined by eq. (87)

defined by eq. (C1)

Green's function at

_2G(x" IY')/_Y i ay i

Gij(_[_1, where x

GIj(7 + UC'r)

Rij

x" due to point source at

dependence has been suppressed

spectral density of Green's function

defined by eqs. (72) and (73)
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GI(_-'[Yl,Y2)

G

G(m)
ij

go(0, _ [_)

h

I_0(_')

I_(_I_')

I
mon

In

2
1

Jn

K+(ce)

K'- [_v- (1/2)]

k

k_m)

k o

k(.m)
L

L±(c_)

L'_(_v)

L(IV)

2

l

M c

M e

defined by eqs. (75) and (76)

defined by eq. (95)

defined by eq. (98)

defined by eqs. (103) and (104), m = 1, 2

free-space Green's function

wave function for plane wave (eq. (68))

typical length associated with distances between boundaries

spectral density of far-field intensity at x

spectral density of far-field intensity at K due to unit volume of source

located at _"

far-field intensity from a monopole source of unit strength

defined by eq. (97)

unit vector in Yl-direction

defined by eq. (97)

defined by eq. (89)

K [_v_(1/2)] with factor corresponding to n= v omitted

wave number

w[m)/c o

k sin 0

w(m)/c °

turbulence correlation length defined by eq. (5 _')

defined by eq. (90)

L (_v) with factor corresponding to n = v omitted

fourth time derivative of L evaluated at _-= 0

turbulence correlation length defined by eq. (60)

fourth time derivative of _ evaluated at T = 0

typical correlation length associated with turbulent eddies

convection Mach number of eddy

Mach number characteristic of turbulence
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M,

M_(_)

n i

fi

P

Pij

Po

R

Ri kz(7,L

Rij(f' _" _)

Ri, jk

/_(0) /_(1)
ijkl' ijkZ

_(2) +
ijkl'_ijkl

_ic_kZ
r

S

S

s J)

(m)s_J)

(2)s(2J)

$

T

Tij

jet- exit Mach number

defined by eq. (95)

.th
component of unit normal in x direction

unit normal

Fourier transform of p - Po

pressure

pressure tensor

average pressure

defined by eq. (47)

radius of curvature in direction of flow

fourth-order moving-axis velocity correlation functions defined in

eq. (28)

second-order moving-axis velocity correlation function (eq. (34))

third-order moving-axis velocity correlation function defined in eq. (35)

fourth-order moving-axis velocity correlation function defined by eq. (33)

fourth-order velocity correlation functions (eqs. (17) to (20) and

eq. (24))

distance of observation point from origin

defined by eq. (48)

defined by eq. (88)

defined by eq. (96)

defined by eq. (100)

defined by eq. (105)

defined by eq. (105)

surface

a large interval of time

Fourier transform of vij
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T+(Ot)

t

U(Y 2)

U!

U_T

Uc

u i

ul
1

U:'
1

2
U

_/, _/2

V

v i

v.'
1

V"
1

V n

x 1, x 2 , x 3

X

Yl' Y2' Y3

7'

_,,

O/

Cv

T

_..

E

60

function of a appearing in expressions for K_(_) and

time

mean velocity in Yl-direction

convection

corn ponent

u i(y-', t)

velocity of eddy

of turbulent velocity in i th direction

ui(Y-",t + r)

mean-square turbulent velocity

volumes for source integration

magnitude of velocity

component of velocity in ith direction

vi(_',t)

vi( _' ', t + "r)

normal velocity component

components of _"

coordinate of observation point

components of

coordinate of source point

- 1
y +- U_l

2

- 1
y +_ u, 1 +

2

complex wave number variable

imaginary part of

defined by equation immediately preceding eq. (95)

defined by eq. (86)

Kronecker delta

L+(a)
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E(i)

e

x

P

Po

U

7

7ij

_°o(_ IYl, Y2)

Xl( )

X2(_)

To(0,

Subscripts:

se

sh

Superscripts:

1,2,3

Dirac delta function with argument (x - -y)

magnitude of

component of _* in i th direction

polar angle measured from Y3-direction

wavelength

radial coordinate in cylindrical coordinates

density

ambient density

real part of

time translation

stress tensor

solution to boundary-value problem given by eqs. (78) and (79)

function appearing in expression for K±(_)

function appearing in expression for L+(_)

component of Green's function (eq. (64))

factor occurring in _ (_ ]_) which is solution to eqs. (70) and (71)

azimuthal angle in ylY2-plane measured from Yl-axis

angular frequency

characteristic angular frequencies appearing in time-dependent part of

velocity correlation function (eq. (101))

self-noise component

shear-noise component

time average

complex conjugate

components of vector
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